Understanding neuralSPOT via the Basic Tensorflow Example
In this article, we walk through a neuralSPOT example application using it as a guide for how to use the SDK to integrate, develop, and deploy sophisticated AI models on Apollo4.
Often, the best way to ramp up on a new software library is through a comprehensive example – this is why neuralSPOt includes basic_tf_stub, an illustrative example that leverages many of neuralSPOT’s features.
In this article, we walk through the example block-by-block, using it as a guide to building AI features using neuralSPOT.
Side Note A “stub” in the developer world is a bit of code meant as a sort of placeholder, hence the example’s name: it is meant to be code where you replace the existing TF (tensorflow) model and replace it with your own.
Everything but the Kitchen Sink
Everything but the Kitchen Sink
Basic_TF_Stub is a deployable KWS AI model based MLPerf KWS benchmark – it grafts neuralSPOT’s integration code into the existing model in order to make it a functioning keyword spotter.
The code uses the Apollo4’s low voltage AUDADC analog microphone interface to collect audio. Once collected, it processes the audio by extracting melscale spectograms, and passes those to a Tensorflow Lite for Microcontrollers model for inference. After invoking the model, the code processes the result and prints it out on the SWO debug interface. Optionally, it will dump the collected audio to a PC via a USB cable.
Along the way, this example uses many neuralSPOT features, including:
- ns-audio paired with the AUDADC driver to collect audio
- ns-ipc to use a ringbuffer to pass the audio to example application
- ns-mfcc to compute the mel spectogram
- ns-rpc and ns-usb to establish a remote procedure call interface to the development PC over a USB cable
- ns-power to easily set efficient power modes
- ns-peripherals to read the EVB buttons
- ns-utils to provide energy measurement tools, along with malloc and timers for RPC
The code is structured to break out how these features are initialized and used – for example ‘basic_mfcc.h’ contains the init config structures needed to configure MFCC for this model.
NOTE See here for instructions for how to build and run basic_tf_stub
Code Structure
Code Structure
Basic_TF_stub, like every neuralSPOT example, is a standalone application – that is to say, it compiles into a binary file that can be uploaded to an Apollo4 evaluation board and executed. The entire application is defined in one file, basic_tf_stub.cc, which pulls in a series of header files structured to highlight how many of the used neuralSPOT components are instantiated and initialized. There are a lot of them, but they’re all fairly short.
Source File | Description |
---|---|
basic_tf_stub.cc | The main() application, includes everything else. |
basic_tf_stub.h | Settings common to all header files |
basic_audio.h | Init structures and callbacks for ns-audio |
basic_mfcc.h | Init structures for MFCC library |
basic_peripherals.h | Init structures for button and power settings |
basic_rpc_client.h | Init structures for RPC system |
basic_model.h | Model-specific settings and init code |
kws_model_settings.h | KWS model settings (straight from MLPerf example) |
Kws_model_data.h | KWS model weights (straight from MLPerf example) |
We’ll walk through each component below.
Code Walkthrough
Code Walkthrough
The code is fairly straightforward, so this document will focus on explaining the trickier bits.
Compile switches
Switch | What it Does |
---|---|
RPC_ENABLED | Enables dumping audio samples to a PC via ns-rpc |
RINGBUFFER_MODE | Enables using ringbuffers for audio sample transfers. A simple ping-pong buffer is used otherwise. |
ENERGY_MODE | Enables marking of different energy use domains via GPIO pins. This is intended to ease power measurements using tools such as Joulescope. |
AUDIODEBUG | Deprecated. Originally a way enable audio dumping via SEGGER RTT, but that has be replaced by ns-rpc mechanisms. |
Basic_tf_stub.cc
The main application loop is a simple state machine:
- ns_core_init() should be called before other neuralSPOT init routines, as it sets neuralSPOT’s initial global state.
- Printing over the Jlink SWO interface messes with deep sleep in a number of ways, which are handled silently by neuralSPOT as long as you use ns wrappers printing and deep sleep as in the example.
NOTE SWO interfaces aren’t typically used by production applications, so power-optimizing SWO is mainly so that any power measurements taken during development are closer to those of the deployed system.
Basic_tf_stub.h
This contains definitions used by the rest of the files. Of particular interest are the following #defines
:
/// High level audio parameters
#define NUM_CHANNELS 1
#define NUM_FRAMES 49 // 20ms frame shift
#define SAMPLES_IN_FRAME 320
#define SAMPLE_RATE 16000
These defines impact how we set up ns-audio and how we process the samples using ns-mfcc. MFCC works by moving a compute window over the audio sample (and in this example, we do that for every collected sample). SAMPLE_RATE, SAMPLES_IN_FRAME, and NUM_FRAMES are all related and are dictated by the particulars of the KWS model we used. In this case, SAMPLES_IN_FRAME are 16000/(49+1).
Basic_audio.h
The basics of using the ns-audio are straightforward, but basic_audio.h can look complex because it demonstrates both NS_AUDIO_API_RINGBUFFER and NS_AUDIO_API_CALLBACK API modes.
Basic_MFCC.h
This one has a couple of hidden complexities worth exploring. In general, the parameters of this feature extractor are dictated by the model.
// MFCC Config
#define MY_MFCC_FRAME_LEN_POW2 512 // Next power of two size after SAMPLES_IN_FRAME (320)
#define MY_MFCC_NUM_FBANK_BINS 40 // from model
#define MY_MFCC_NUM_MFCC_COEFFS 10 // from model
// Allocate memory for MFCC calculations
#define MFCC_ARENA_SIZE 32*(MY_MFCC_FRAME_LEN_POW2*2 + MY_MFCC_NUM_FBANK_BINS*(NS_MFCC_SIZEBINS+MY_MFCC_NUM_MFCC_COEFFS))
static uint8_t mfccArena[MFCC_ARENA_SIZE];
ns_mfcc_cfg_t mfcc_config = {
.arena = mfccArena,
.sample_frequency = SAMPLE_RATE,
.num_fbank_bins = MY_MFCC_NUM_FBANK_BINS,
.low_freq = 20,
.high_freq = 4000, // from model
.num_frames = NUM_FRAMES,
.num_coeffs = MY_MFCC_NUM_MFCC_COEFFS,
.num_dec_bits = 0,
.frame_shift_ms = 20, // ignored
.frame_len_ms = 30, // ignored
.frame_len = SAMPLES_IN_FRAME,
.frame_len_pow2 = MY_MFCC_FRAME_LEN_POW2
};
The other tricky bit is the mfccArena
, which is used to store pre-calculated filters and temporary state. The ns-mfcc library maps a number of arrays to this memory block which translates to the messy sizing of the Arena (still better than the Tensorflow Lite Micro approach, which is ‘guess and we’ll tell you if you’re right’).